www.irjet.net

p-ISSN: 2395-0072

INFILL WALL STIFFNESS CONSIDERATION IN EARTHQUAKE ANALYSIS

Prof. K.K. Tolani^{1,} Mr. Pravin A. Nikam²,

¹Assistant Prof. Late G.N. Sapkal College of engineering, university pune, india, kktolani62@gmail.com ²M.E. student Late G.N. Sapkal College of engineering anjeneri, university pune, India, Pravinnikam16@gmail.com ______***

Abstract. In this study symmetrical R/C frame structure and its lump mass model is created. Static earthquake analysis and response spectrum method is applied for to get the seismic forces in the structures. Two cases are considered for analysis such as bare frame, equivalent strut and converted it into its lump mass models. All analysis carried out by SAP 2000 software. Results on base shear, first fundamental frequencies, and frame displacement for lump mass models, Eigen values, time period, mode shapes for lump mass model of bare frame and equivalent strut applied frame model are calculated.

Key Words:- Infill wall, high rise building, equivalent strut model, displacement, lump mass models, etc

I. INTRODUCTION

In metro city there is necessity to build a high rise structure due to high population and less land availability. Also the human ambition is force to create taller structure. Large numbers of high rise reinforced concrete structure are constructing to full fill the human requirement. It is seen that stiffness and strength of reinforced concrete structure is greatly increased by considering infill masonry. In conventional analysis we just consider the frame and analysis it with the help of any computer applicable software such as STADD Pro, ETAB, and SAP etc. In such analysis wall are considered just as a load on beam of frame structure and they do not carry any load. But the infill walls are providing some stiffness and strength in case when horizontal forces act on the structure. A lot of work has been carried on consideration of infill wall stiffening effect and its construction details in which most of them are based on equivalent trut method in which method, wall panels are replaced with the help of equivalent strut. In these work lump mass models of solved problem is again solved by software and compare the results of analytical and software solved problem base on above result we create lump mass model and bare frame of actual building and its base shear is compare with each other, also lump mass and frame structure of equivalent strut models are created and their base shears are compare. For manual checking base shear of both frames are found out by static method of IS 1893-2002

II. LITERATURE REVIEW

C. Donmez & M. A. Cankaya [5] "Drift Behavior of Reinforced Concrete Frames with Infill Walls at Progressing Damage Levels" in this paper they investigate the in-plane drift behavior of the RC frames With infill walls to provide hard data about the drift capacity and its distribution about the height of the frames. for that purpose they prepared Four scaled four-story reinforced concrete frames were tested with and without infill walls. Frames were subjected to pseudo-static cyclic loading with a triangular profile. Considering that natural frequencies and the modal shapes are interrelated with the stiffness and the drift behavior of the frames under dynamic loading, these parameters are also investigated. It is observed that progressing damage and infill walls caused major changes on both stiffness and drift behavior of the tested frames. Effect of changes could be either advantageous or disadvantageous depending on the failure mode. Results show that distribution of drift that is based on mode shapes indicate higher local concentrations than distribution observed under forced static conditions A.J.Urich & J.L. Beauperthuy [6] "Protagonism of the Infill Walls on Seismic of Venezuela Buildings Performance" in this paper they used the predominant structural system used in Venezuela the reinforced concrete frames with masonry infill. It is still common that structural engineers underestimate those masonry walls' stiffness, strength and fragility, considering them only as a permanent weight and seismic mass. However, the assessments of buildings damaged by recent earthquakes have left in evidence that masonry walls, especially infill's, are the protagonists of seismic performance. Masonry walls are initially much stiffer than frames; therefore, when buildings are exposed to a seismic shake, the first pulses are resisted entirely by the infill walls, with minimal contribution from the main structure, which enter to play only after walls become broken; consequently, all the drift demand is concentrated in the building's stories or regions whose walls are the first to fail. The partially broken walls are used to cause a "soft story" and "short column" mechanisms that did not exist in the original configuration of the building.

Mr. V. P. Jamnekar & Dr. P. V. Durg [7] "SEISMIC EVALUATION OF BRICK MASONRY INFILL" The diagonal strut has been modeled by them and using SAP 2000 software and pushover analysis is performed. The example building is analysed, the effect of masonry infill in seismic evaluation of bare frame and frame with 40% infill

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

is studied. The results obtained from the analysis are compared in terms of strength and stiffness with bare frame.

I. CONCEPT OF EQUIVALENT STRUT

investigators have proposed various approximations for the width of equivalent diagonal strut. Originally proposed by polyakov [1] (1956)and subsequently developed by many investigators, the width of strut depends on the length of contact between wall and column αh and between the wall and beam αL shown in fig 1. Stafford smith [2] (1966) developed the formulation for αh and αL on the basis of beam on an elastic foundation. the following equations are proposed

$$\begin{split} \alpha h &= \frac{\pi}{2} \sqrt[4]{\frac{4E_F h I_c}{t \sin 2e \, E_m}} \\ \alpha L &= \sqrt[4]{\frac{4E_F \, L I_b}{t \sin 2e \, E_m}} \end{split}$$

Where

 E_F and $E_{m=}$ elastic modulus of the masonry wall and frame material respectively

t,h,L thickness, height and length of infill wall respectively I_c and I_b = moment of inertia of column and beam frame respectively.

$$e = \tan^{-1}(\ ^h/_L\)$$

Hendry [3] (1998) has proposed following equation to determine equivalent strut or equivalent or effective width of strut.

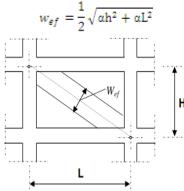


Fig1. Equivalent structure

II. VALIDATION OF SOFTWARE

Problem solved in Earthquake resistant Design of structure [4] page no 296-311 are again solved with the software and the result of both analytical solution and software are as follows

Natural time period

 $\circ \quad \text{Lump mass model without infill model} \\$

Table.1.

Mode	Natural	Natural Time
no.	Time Period	Period by
	by analytical	software
	solution	(sec)
	(sec)	
1	0.6977	0.69786
2	0.2450	0.245026
3	0.1636	0.163643
4	0.1383	0.138302

 Lump mass model with infill model (Equivalent strut model)

Table 2.

Table 2.						
Mode	Natural	Natural				
no.	Time	Time				
	Period by	Period by				
	analytical	software				
	solution					
1	0.1655	0.165503				
2	0.0581	0.05811				
3	0.0388	0.038809				
4	0.0328	0.032799				

Mode shapes

 Mode shape of Lump mass model without infill as per analytical solution shown in Fig.2



Fig.2

 Mode shape of Lump mass model without infill model as per software shown in fig 3.

Table3.

STOREY HEIGHT (mtr)	MODE1	MODE 2	MODE 3	MODE 4
14	0.087167	-0.08649	0.083884	-0.06956
10.5	0.079813	-0.02729	-0.04484	0.079882
7	0.060751	0.064378	-0.05396	-0.06899
3.5	0.03278	0.079456	0.080849	0.039775
0	0	0	0	0

IRIET Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

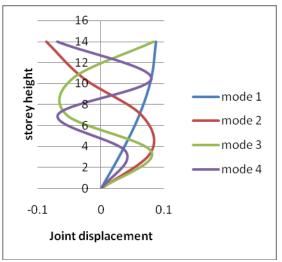


Fig.3 (Graphical representation of table 3)

Mode shape Lump mass model with infill model (Equivalent strut model) as per software shown in fig 4.

Table 4

		rabie 4.		
STOREY HEIGHT (mtr)	MODE1	MODE 2	MODE 3	MODE 4
14	0.087167	-0.08649	-0.08388	0.069563
10.5	0.079813	-0.02729	0.044835	-0.07988
7	0.060751	0.064378	0.05396	0.068988
3.5	0.03278	0.079456	-0.08085	-0.03978
0	0	0	0	0

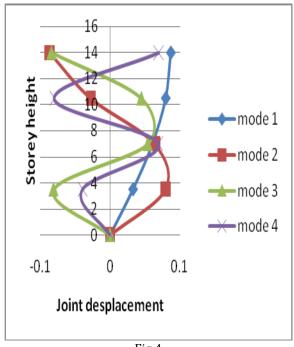


Fig.4 (Graphical representation of table 4)

Eigen values

o Lump mass model without infill model Table5.

1001	•••
FROM	FROM
ANALYTICAL	SOFTWARE
SOLUTION	
81	81.063
657	657.56
1475	1474.2
2065	2064

e-ISSN: 2395-0056

Lump mass model with infill model (Equivalent strut model)

Table6.

FROM	FROM
ANALYTICAL	SOFTWARE
SOLUTION	
1442	1441.3
11698	11691
26227	26211
36719	36697

Base shear

Ratio of base shear as per analytical solution With and without infill wall

$$\frac{125.699}{90.930} = 1.5$$

Ratio of base shear as per software With and without infill wall

All the above results are satisfactory

III. **METHODOLOGY**

The mathematical modeling of building structure is as per IS 1893-2002. In order to compare the bare frame, equivalent strut model we create their lump mass models and results are compare with them. Methods adopted for these Analyses are Response Spectrum analysis and static earthquake analysis. The given structure will be analyses for the cases mentioned bellow Bare frame and its lump mass models. Equivalent strut model and its lump mass model.The structure will be analyses by response spectrum analysis as per IS-1893 for zone III, typical framing pan of 6 storey building shown in fig.2 building symmetrical in plan having each story height 3 m.

Parameters consider for analysis

Floor to floor height= 3 m Slab thickness= 0.15 m External and internal wall thickness

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

= 0.23 m

Beam size= 0.23 X 0.5 m Column size = 0.70x0.70 m

Live load = 3 kn/m2

Floor finish= 1 kn/m2

Seismic zone=III

Density wall = 20 kn/m

Density concrete= 25 kn/m

Grade of concrete= M20/M25

Modulus of elasticity of frame

= $\frac{5000\sqrt{fck}}{\sqrt{fck}} = 22360.00$ N/mm2

Modulus of elasticity wall =13800N/mm2

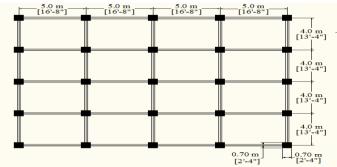


Fig.5 building plan

IV. RESULT AND DISCUSSION

To solve the above problem the lump mass model of frame structure by using same procedure used to solve validation problem. And the result getting from the analysis is discussed as per bellow.

Fig 6 bare frame lump mass model

 base shear calculations bare frame lump mass model

Table7.

Base shear	Lump mass	Manually
(kn)	model	calculated
ESA	1684.959	1652.23
RSA	1684.821	-

 base shear calculations equivalent strut lump mss model.

Table8.

Base shear	Lump mass	Manually
(kn)	model	calculated
ESA	1818.156	1782.84
RSA	2072.448	-

Ratio of base shear With and without infill wall for lump mass of actual structure 2072.448 = 1684.821 = 1.3

Mode shapes of lump mass

o Without strut

Table9.

STO REY HT(mtr)	MOD E 1	MOD E 2	MOD E 3	MOD E 4	MOD E 5	MOD E 6
18	0.011 973	0.024 497	0.013 892	- 0.009 26	0.023 234	- 0.017 32
15	0.016 988	0.018 473	- 0.015 03	- 0.020 12	- 0.010 87	0.021 99
12	0.020 909	0.002 21	- 0.022 85	0.017 114	- 0.009 53	- 0.022 68
9	0.023 482	- 0.015 28	0.001 411	0.013 439	0.022 885	0.019 263
6	0.024 541	- 0.024 3	0.023 69	- 0.022 36	- 0.019 33	- 0.012 36
3	0.006 186	0.016 944	0.023 309	0.023 733	- 0.018 43	0.009 524
0	0	0	0	0	0	0

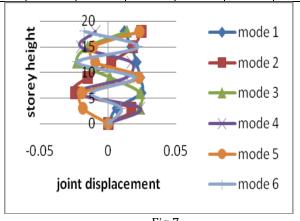


Fig 7 (Graphical representation of table 9)

e-ISSN: 2395-0056 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

With strut Table10

Table10.						
STO						
REY						
HT(MOD	MOD	MOD	MOD	MOD	MOD
mtr)	E 1	E 2	E 3	E 4	E 5	E 6
		-	-			-
	0.017	0.016	0.002	0.019	0.023	0.013
18	44	49	54	589	589	65
		-	-		-	
	0.017	0.004	0.023	0.012	0.017	0.019
15	447	25	09	572	26	942
			-	-	-	-
	0.017	0.009	0.017	0.022	0.003	0.022
12	452	283	71	04	08	56
				-		
	0.017	0.019	0.007	0.008	0.020	0.021
9	455	986	542	27	914	03
					-	-
	0.017	0.024	0.024	0.023	0.021	0.015
6	456	596	332	658	78	63
		-		-	-	
	0.017	0.023	0.020	0.016	0.010	0.004
3	432	7	855	4	78	849
0	0	0	0	0	0	0

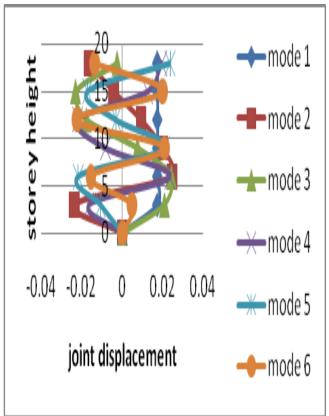


Fig 8 (Graphical representation of table 10)

Frequencies Eigen values of lump mass modes

Without strut

Tah	le11

		Frequenc	CircFre	Eigenvalu
Mode	Period	y	q	е
	Sec	Cyc/sec	rad/sec	rad2/sec2
Mode	0.25729			
1	1	3.8867	24.421	596.36
Mode	0.08773			
2	9	11.397	71.612	5128.3
Mode	0.05512			
3	6	18.14	113.98	12991
Mode	0.04224			
4	9	23.669	148.72	22117
Mode	0.03617			
5	2	27.646	173.7	30173
Mode	0.03342			
6	4	29.918	187.98	35338

With strut

Table12.

		Frequenc	CircFre	Eigenvalu
Mode	Period	у	q	e
	Sec	Cyc/sec	rad/sec	rad2/sec2
Mode	0.16163			
1	2	6.1869	38.873	1511.1
Mode	0.00300			
2	6	332.66	2090.2	4368800
Mode	0.00156			
3	7	638.32	4010.7	16086000
Mode				
4	0.00112	892.65	5608.7	31458000
Mode				
5	0.00093	1075.8	6759.6	45692000
Mode				
6	0.00085	1176.9	7394.7	54682000

V. CONCLUSION

Fig. No.7. Shows the mode shapes of bare frame models Fig. No.8. shows the different mode shapes for bare frame with considering the stiffness of infill (i.e. equivalent strut

Base shear of structure is increased by 1.3 times when we consider the stiffness of infill in the structure

Natural time period of structure is changes from 0.257291 sec. to 0.161632 sec if we consider stiffness of structure When we consider stiffness of infill the Eigen values will be changes from 596.36 rad2/sec2 to 1511.1 rad2/sec2

VI. ACKNOWLEDGMENT

I am very thankful towards Dr. N.U. Mate for their valuable guidance and encouragement.

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

V. REFERENCES

- 1. Polyakove s.v, "masonry in framed building, gosudalst-vennoe' stvo literature po straitel' stuv I Arkitecure, moskva, trans. G.L. cairns", building research sation Watford Herts, 1956
- Stafford-Smith, B "behavior of square infill frame" journal of the structural Davisson, Proceeding Of ASCE Vol.91 No ST1, PP381-403,1996.
- Henry A.W. structural masonry, 2nd ed. Macmillan Press.
- Pankaj Agarwal & Manish Shrikhande, "Earthquake resistant Design of structure", page no 296-311, PHI publication.
- C. Donmez & M. A. Cankaya "Drift Behavior of Reinforced Concrete Frames with Infill Walls at Progressing Damage Levels" İzmir Institute of Technology, Turkey, 15 WCEE LISBOA 2012
- 6. A.J. Urich & J.L. Beauperthuy, "Protagonism of the Infill Walls on Seismic Performance of Venezuela Buildings Performance", B.R.S. Ingenieros, C.A., Caracas, Venezuela
- 7. Mr. V. P. Jamnekar & Dr. P. V. Durge "SEISMIC EVALUATION OF BRICKMASONRY INFILL", International Journal of Emerging Trends in Engineering & Technology (IJETET) Vol. 02, No. 01, 2013, IJETET Page 1